A newly-emerged (August 2013) artificially-triggered fumarole near the Fiumicino airport, Rome, Italy

Pio Sella a, Andrea Billi b,⁎, Ilaria Mazzini b,c, Luigi De Filippis c, Luca Pizzino d, Alessandra Sciarrà d, Fedora Quattrocchi d

a Geomagellan, Montecompatri, Rome, Italy
b Consiglio Nazionale delle Ricerche, IGAG, Rome, Italy
c Dipartimento di Scienze, Università Roma Tre, Rome, Italy
d Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

ARTICLE INFO

Article history:
Received 20 November 2013
Accepted 6 May 2014
Available online 14 May 2014

Keywords:
Fumarole
Mud volcano
Gas hazard
Drilling
Rome

ABSTRACT

Early in the morning of 24 August, 2013, following by hours the drilling of a shallow borehole in the same spot, a new fumarole producing emissions of CO2-rich gas, water, and mud suddenly appeared at a crossroad along the fenced area of the Fiumicino international airport of Rome, Italy. Similar episodes have been scientifically documented or simply reported in recent and past years. To understand why gases are easily entrapped in the shallow subsurface of the Fiumicino area, we used five borehole cores drilled by us, analyzed the stratigraphy of these and other nearby cores, acquired a 2D seismic refraction tomogram, and performed chemical and isotopic analyses of water samples collected from aquifers intercepted by two drilled boreholes. Our boreholes were realized with proper anti-gas measures as, while drilling, we recorded the presence of pressurized gases at a specific permeable gravel level. Results show that, in the study area, gases become mainly entrapped in a mid-Pleistocene gravel horizon at about 40–50 m depth. This horizon contains a confined aquifer that stores the endogenous upwellings gases. The gravel is interposed between two silty-clayey units. The lower unit, very hard and overconsolidated, is affected by fractures that allow ascending gases to bypass the otherwise impermeable shale, permeate the gravel, and dissolve into the aquifer. In contrast, the upper unit is impermeable to fluids and seals the gas-pressurized aquifer, which therefore constitutes a source of hazard during human activities such as well drilling, quarrying, and various building-related excavations. As the stratigraphy of the Fiumicino area is very common in large portions of the densely populated Roman area and as the adjacent volcanic districts are hydrothermally active, we conclude that phenomena similar to that observed at Fiumicino could again occur both at Fiumicino and elsewhere in the surrounding region. As a prompt confirmation of our conclusion, we signal that, while writing this paper, new artificially-triggered degassing phenomena occurred off Fiumicino in connection with the construction of the new harbor.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Suddenly on the early morning of 24 August 2013, a fumarole producing emissions of gas (mainly CO2), cold water (c. 20 °C), and mud suddenly appeared at a crossroad along the fenced area of the Fiumicino international airport of Rome, Italy (Figs. 1 and 2; Supplemental Materials 1 to 3; Cirotoli et al., 2013; Pantaloni and Argentieri, 2013). For weeks the fumarole has continued its emissions, forming, at times, a small mud formation (Fig. 2). The emissions have then slightly decreased and are still active at the time of writing (November 2013). Similar structures are well known as volcanic or endogenous manifestations worldwide including Iceland, Italy, Japan, and Yellowstone and Salton Sea in the USA, and are potentially hazardous when occurring in or close to inhabited areas both for the emitted lethal gases and for other connected phenomena such as mudflows (Werner et al., 2000; Hannington et al., 2001; Kopf, 2002; Patrick et al., 2004; Manga and Brodsky, 2006; Barberi et al., 2007; Caliro et al., 2007; Etope et al., 2007; Giannanco et al., 2007; Ohba et al., 2007; Mazzini, 2009; Chiodini et al., 2012).

The city of Rome is located in the Tyrrenian (western) side of the central Italian peninsula (Fig. 1). This area constitutes the rear of the Cenozoic–Quaternary east-verging Apeninnes fold-and-thrust belt and has been stretched by backarc and postorogenic processes since middle Miocene time (Brogi and Liotta, 2008; Barchi, 2010; Brogi, 2011). In this region, a shallow Moho (Fig. 1a), Quaternary extensional basins and volcanoes, and high heat and deep CO2 fluxes are the main symptoms of the Quaternary-to-present stretching processes (Pecceirollo, 1985; Malinverno and Ryan, 1986; Sartori and ODP LEG 107 Scientific Staff, 1989; Mongelli and Zito, 1991; Faccenna et al., 1994a; Cavinato and

http://dx.doi.org/10.1016/j.jvolgeores.2014.05.008
0377-0273/© 2014 Elsevier B.V. All rights reserved.
Fig. 1. (a) Depth to the Mohorovičić discontinuity (Moho) in Italy and surrounding areas (after Dëzes and Ziegler, 2002). Numbers in the map are Moho depth in kilometers. The crust of the Tyrrenian (western) side of the Italian peninsula (where Fiumicino is located) has been stretched and thinned by postorogenic processes. The Tyrrenian basin is where the thinnest crust of western Europe–Mediterranean occurs. (b) Geological setting of the Roman area dominated by the Tiber River valley (Roman basin) and two adjacent large volcanic districts of Quaternary age: the Sabatini district toward the northwest and the Colli Albani district toward the southeast. The study area (Fiumicino) is located on the Tiber River delta along the Tyrrenian coast. (c) Three-dimensional diagram showing the Colli Albani subsurface geological structure (after De Rita et al., 1988, modified by Giordano et al., 2013). See the Fiumicino area located on the Tiber River delta.
DeCelles, 1999; Chiodini et al., 2000; Gambardella et al., 2004; Acocella and Funiciello, 2006; Billi et al., 2006; Billi and Tiberti, 2009; Brogi and Capezzuoli, 2009; Brogi et al., 2010; Giordano et al., 2013). The city of Rome, in particular, has been built along the Tiber River valley between two Quaternary large volcanic districts: the Colli Albani district toward the southeast and the Sabatini district toward the northwest (Funiciello and Parotto, 1978; Funiciello, 1995; Alvarez et al., 1996; Bozzano et al., 2008; Funiciello et al., 2008; Funiciello and Giordano, 2010; Milli et al., 2013). This latter volcanic district started its activity around 600 ka and has been vigorously active until at least late Pleistocene time (Funiciello et al., 1976; Cioni et al., 1993; De Rita et al., 1996; Sottili et al., 2010; Sottili et al., 2012). The activity of the Colli Albani volcano, which is very close to (partly beneath) Rome, started around 700-600 ka and its most recent hydrothermal activity (late Pleistocene to present time) has influenced the life, urbanization, and development of Rome since its birth in the 1st Millennium B.C. (De Rita et al., 1988;
2. Geological setting

The Fiumicino fumarole is located about 20–25 km to the west-southwest of the Rome city center, in the area of the Tiber River delta along the Tyrrenian coast (Figs. 1 and 2). The Roman basin, which includes most part of the city of Rome and also the Fiumicino study area, developed since late Pliocene time and was accompanied by a continuous regional tectonic uplift (Milli, 1997; Bordoni and Valensise, 1998; Giordano et al., 2003; Milli et al., 2013) and by an intense volcanic activity with a climax in middle–late Pleistocene time when the near volcanic districts developed (Locardi et al., 1976; Cioni et al., 1993; De Rita et al., 1993, 1995; Karner et al., 2001). The Monte delle Piche Formation (MDP) locally forms the hardground basement of the Roman basin (Milli et al., 2013). This formation consists of overconsolidated gray silty clays, interbedded with sand levels. Due to its brittle behavior connected with the overconsolidation state, the formation is, in places, characterized by fractures (Funiciello and Giordano, 2008; Giordano and Mazza, 2010). Toward the west, the hard clayey deposits of the MDP pass with tectonic contact to the clays of the Lower Pliocene Marne Vaticane Formation (MVA; Funiciello and Giordano, 2008). These clayey deposits are known all over the Roman basin at various elevations mostly from borehole logs but also from outcrops. The elevation variations are mainly due to Pleistocene extensional faults that controlled and dismembered the Roman basin (Funiciello et al., 1976, 2008; Funiciello and Parotto, 1978; Faccenna et al., 1994b; Di Filippo and Toro, 1995; Funiciello, 1995; Giordano et al., 2003). Recently, the stratigraphy of the Tiber River delta area has been studied in detail through several sediment cores (Marra et al., 2013; Milli et al., 2013). Through these investigations, the Monte delle Piche Formation (MDP: Lower Pleistocene) and the Ponte Galeria Sequence (PGS: Late Lower Pleistocene–Holocene) have been identified. The two sequences are separated by a polygenetic erosional surface that formed during the sea-level fall between MIS31 and MIS27 (Milli et al., 2013). In particular, above a gravel layer that can be considered a marker of the PGS succession, a complex deposit of silts, clays, and sands constitutes the Tiber Depositional Sequence (TDS), showing the transformation of the Tiber delta from a wave dominated estuary to a wave dominated delta with increasing river power (Milli et al., 2013). The main target of this paper is the above-mentioned gravel layer, which, at least in the study area (Fiumicino), hosts a gas pressurized confined aquifer.

The fumarolic phenomenon occurred since August 2013 in the Fiumicino area (Ciotoli et al., 2013) and is not at all an extraordinary event (Pantaloni and Argentieri, 2013). In 2005, in a locality close to the fumarole studied in this paper (Fiumicino), a borehole drilled down to about 27 m depth caused a sudden gas blowout with emission of CO2 accompanied by minor discharge of N2 and CH4 (Barberi et al., 2007). These same authors mentioned at least three previous similar events occurred in the same area (Fiumicino) within a few past years. Moreover, in May 1925, in a site 400 m distant from the fumarole emerged in August 2013, while constructing a glass factory, the drilling of a borehole down to 40 m depth triggered the emergence of a fumarole with emission of water, mud, gravel, and gases. As the emission did not cease soon, the borehole was plugged after only a few days, but minor emissions kept existing for about one year in the surrounding construction area where drilling and excavations were active (Novarese, 1926; Argentieri and Pantaloni, 2013; Pantaloni and Argentieri, 2013). Novarese (1926) reported also similar events that occurred in the Roman area prior than 1925. Of particular interest is the gaseous eruption triggered in 1890 by the drilling of a borehole in the area of the Ostia dewatering plant located along the Tyrrenian coast circa 5 km to the southeast of Fiumicino. The eruption, with emission of gas, water, and mud, occurred when the borehole reached the depth of 128 m. A further eruption occurred when the borehole reached the depth of 194 m (Novarese, 1926; Pantaloni and Argentieri, 2013).

3. Methods and results

3.1. Stratigraphy

Stratigraphic results from five boreholes (S1, S2, S3, S4, and S5) drilled by one of us (P.S.) in the Fiumicino area are shown in Figs. 3 and 4. Fig. 4 combines our results with those from a previously drilled borehole (S0). The boreholes reached a maximum depth of about 70 m intercepting various continental and marine sediments. For the aims of this paper, in addition to the micropaleontological analyses depicted below (Fig. 3), it is important to mention information from the analyzed boreholes and cores: (1) as observed during drilling, the gravel layer located at about 40–50 m depth (Fig. 4) hosts a confined gas pressurized aquifer such that proper anti-gas measures had to be
taken during drilling (i.e., S4 and S5 boreholes); (2) a shallower unconfined aquifer is hosted in the sands lying at about 10 m depth and in the upper sediments (i.e., S1 to S5 boreholes; Fig. 4); and (3) carbonate micro-concretions filling the available pores were observed in the clayey silts topping the gravel layer at about 45 m depth (i.e., S4 and S5 boreholes; Fig. 3).

The micropaleontological analyses were performed on about 20 samples from the S4 sediment core (Fig. 3). The lowermost stratigraphic unit consists of clay and silty clay with sandy levels. The foraminiferal assemblage is characterized by typical circalittoral benthonic taxa (Bolivina spp., Bulimina spp., Hyalinea baltica, Cibicidoides pachyderma, Textularia) and significant frequencies of planktonic species (G. bulloides, G. ruber, Globorotalia inflata, Neogloboquadrina pachyderma and Turborotalia quinqueloba). The ostracod assemblage is characterized by Henryhowella partenopea, Krithe exigua, and Cytheretta spp. Such assemblage suggests an offshore environment and an age attribution to the Lower Pleistocene (Emilian) for the occurrence of H. baltica.

Through a sharp lithological change, the sequence passes to gravels and sandy gravels. The pebbles are mainly derived from carbonate rocks of the Apennines. Such deposits do not contain any fossils. They have been attributed to fluvial and beach environments of the Ponte Galeria Formation (Middle Pleistocene, Bellotti et al., 1995).

Another dramatic lithological change marks the passage to the silts and sandy clays with sandy layers. The foraminiferal assemblage is characterized by benthonic taxa typical of shallow waters rich in organic matter (Ammonia parkinsoniana, Triloculina schreiberiana, Adelosina spp.). The ostracod assemblage is typical of coastal lagoons and estuaries with strong freshwater inputs linked to the nearby river (Cyprideis torosa, Pseudocandona marchica, Pontocythere turbida, Palmoconcha turbida, Loxoconcha stellifera, Candona spp. Ilyocypris spp.). These associations are typical of the Tiber Depositional Sequence, attributed to the Upper Pleistocene–Holocene.

From the visual inspection of the other borehole cores (S0, S1, S2, S3, and S5), we inferred a stratigraphy very similar to the one of the S4 core (Fig. 3), at least for the middle and deepest portions (Fig. 4). The S4 and S5 cores differ from the other four cores only for the shallowest 5–6 m, where (S4 and S5) reworked recent material occurs along the partly-artificial banks of the Fiumicino Channel. Hence, in Fig. 4, we propose a cross-sectional stratigraphic correlation among the six boreholes. This correlation is substantially consistent with previous borehole-
core-based stratigraphic models in the same or nearby areas (e.g., Bellotti et al., 1995; Bozzano et al., 2008; Funiciello and Giordano, 2008; Funiciello et al., 2008; Praturlon, 2008; Raspa et al., 2008; Marra et al., 2013; Milli et al., 2013).

3.2. Geophysics

To understand the subsurface setting of the Fiumicino area and, in particular, the lateral continuity vs. variability of the stratigraphic succession observed in the borehole cores (Fig. 4), we completed a 2D seismic refraction tomogram (e.g., Bais et al., 2003; Heincke et al., 2010) across the study area. The tomogram is shown in Fig. 5 whereas its track is shown in Fig. 2(a). We used 24 geophones placed along the profile with a spread length of 5 m. This setting was chosen to obtain good ray coverage at depths down to 60 m at least. As energy sources, we used explosives with charges of 27 g placed in 30–40 cm deep wells. Data collection was performed with five 24-channel recording units with a spread length of 24 m. Data were then inverted using a smoothness constrained minimization algorithm in the RAYFRACt software to obtain the tomogram of Fig. 5. The profile is stratigraphically calibrated using results from the near S4 borehole (Figs. 2a, 4, and 5).

The most evident feature of the tomogram shown in Fig. 5 is the approximately flat attitude of the P-wave velocity (Vp) domains, indicating a general flat geometry of the investigated stratigraphy. The tomogram shows a general increase of the P-wave velocity (Vp) with depth from a minimum of 100–200 m/s to a maximum of about 1000 m/s at a depth of about 60–70 m. A horizontal pattern of curves separating different Vp domains is observed, particularly at depths greater than 35 m. Above 35 m, the velocity pattern is more irregular and the velocity gradient with depth is low (c. 100 m/s every 10 m), probably due to the presence of loose shallow material. Below 35 m of depth, this gradient increases becoming about 100 m/s every 5 m.

Fig. 4. Geological cross-section through the study area (see track in Fig. 2a). The cross-section is based on the S0 to S5 borehole cores whose stratigraphy is shown along the cross-section. The presence of confined and unconfined aquifers as recorded during drilling is also shown with filled and unfilled triangles, respectively.

Fig. 5. 2D tomographic velocity model obtained from the seismic refraction profile whose track is shown in Fig. 2(a). The tomogram has been calibrated using the stratigraphy of the S4 borehole (Fig. 4) that has been projected on the center of the tomogram. A synthetic stratigraphy of the S4 borehole is shown on the left side of the figure.
depth and the curves become almost flat probably because of the presence of compact horizontal deposits (clay, sandy clay, and gravel). Below the gravel (below 55–60 m of depth), the velocity gradient doubles again becoming circa 100 m/s every 2–3 m depth in coincidence with the occurrence of very compact horizontal clays (compare Figs. 4 and 5).

3.3. Water geochemistry

Chemical and isotopic measurements in groundwater were performed in piezometers S1 (P1) and S3 (P2), collecting water at a depth of −15.30 and −24.30 m, respectively. In addition to these groundwater samples, for comparison, chemical data from both an 18 m deep well (Fl) located in the inner sector of the study area (see location in Fig. 1b), and from local seawater (SW, Cinti et al., 2011), are reported. The main aim of the geochemical analysis was to determine the origin of the circulating fluids, with specific focus to the provenance of the dissolved carbon, assessing its relationship with the stratigraphic setting of the area.

Water temperature, pH, redox potential (Eh), and electrical conductivity (salinity) were determined in situ with portable instruments previously calibrated with standard solutions. Alkalinity was measured on filtered (0.45 μm) and stored in high-density polyethylene flacons for laboratory analysis. Major anions (Cl^−, Br^−, SO_4^{2−}, and NO_3^−) and cations (Ca, Mg, Na and K) were analyzed by ion chromatography (Dionex, DX500) on filtered and on filtered and acidified samples, respectively. The analytical error for major elements was <10%. The total dissolved carbon (TDC, representing the sum of the carbonic acid and bicarbonate) was computed by using the PHREEQC code v.2.12 (Parkhurst and Appelo, 1999), operating with the Lawrence Livermore National Laboratory (LLNL) database, having as input temperature, pH, Eh, alkalinity, and major elements. The carbon isotopic ratios of TDC, expressed as δ^{13}C vs. VPDB, were analyzed by mass spectrometry (Finnigan Delta Plus) following the procedure described by McCrea (1950).

Waters from piezometers P1 and P2 show a very high salinity (TDS ranging from 21,826 to 29176 mg/l), quasi neutral pH, and alkalinity spanning from 15.60 to 27.10 mmol/l. Sample Fl shows medium salinity (TDS = 1115 mg/l), slightly acidic pH, and 11.3 mmol/l of alkalinity.

Inspection of the classical Ludwig–Langelier diagram (Fig. 6a), based on the relative concentrations of major ions, along with Ca–Mg–Na and Cl–SO_4^2−–HCO_3^− ternary plots (Fig. 6b and c) allow us to put forward some general hypotheses on the origin of the sampled waters. A first look at Fig. 6a, b, and c points out a great difference in the chemical compositions of samples P1 and P2 with respect to sample Fl. Waters from piezometers stand in the chloride–alkaline field, close to the point representative of the local seawater composition, while sample Fl falls in the field of the freshwaters, having a bicarbonate–earth chemistry. Sample Fl was taken as representative of the waters circulating in the inner Fiumicino territory, not affected by seawater contamination (see explanations below). Therefore, despite of its saline content (TDS = 1115 mg/l), Fl will be considered as the freshwater term in the reported binary and ternary plots (Figs. 6 and 7).

To understand the relationships between Na–Cl samples and both local seawater and freshwaters, chemical characteristics of these two “end-members”, mainly referred to their major element composition and ion ratios, have to be considered. Seawater in general has a uniform sequence, the contaminated water progressively undergoes a quality deterioration (Total Dissolved Solids > 20 g/l), eventually resulting unfit both for domestic and for agricultural purposes. The saline wedge (8 m thick, with TDS = 35 g/l) has been detected at a depth of 13 m in the waters of the Fiumicino Channel (Capelli and Mazzu, 2008), very close to the P1 and P2 sites (Figs. 2 and 4). Moreover, in a piezometer located a few kilometers to the south of Fiumicino, highly saline water (TDS = 23 g/l, Capelli and Mazzu, 2008) has been found at a depth of 25.9 m, confirming that seawater intrusion in the study area is widespread. This process seems unrelated with the distance from the shoreline, rather with the depth of the wells (De Luca et al., 2004). The subsurface seawater encroachment is less evident toward the inner part of the Fiumicino area (i.e., toward Rome; Capelli et al., 2008), where groundwater is unaffected by saline contamination (e.g., Fl site).

The values of HCO_3 vs. Cl (Fig. 7c) are indicative of freshwater contribution and point out a very large difference in the alkalinity content of the sampled groundwater with respect to seawater. Generally, in case of seawater intrusion, the HCO_3/Cl ratios gradually decrease and approach the seawater value as Cl (or TDS) increases; consequently, the considered ratio can be considered as a good indicator for salinization due to the seawater encroachment. On the contrary, samples P1, P2, and Fl depict a different trend from that individuated by the freshwater–seawater line, due to their higher bicarbonate contents. As a consequence, Fig. 7c implies, for groundwater, an additional carbon source than seawater. To examine the provenance of this external source of carbon, we performed an analysis of the δ^{13}C samples, whose values range from −19.30 (sample Fl) to −11.43% (sample P2) vs. VPDB (Table 1). To investigate the various possible sources of the dissolved CO_2, we calculated the pristine carbon isotopic composition of carbon
dioxide interacting with groundwater from the measured $\delta^{13}C$ values of TDIC, using the following equation (Zhang et al., 1995):

$$
\delta^{13}C_{\text{CO}_2(\text{gas})} = \delta^{13}C(\text{TDIC}) - \left(\frac{\epsilon_{\text{HCO}_3^{-}-\text{CO}_2} \times [\text{CO}_2^{-}\text{aq}]}{[\text{TDIC}]} + \frac{\epsilon_{\text{CO}_3^{2-}-\text{CO}_2} \times [\text{CO}_3^{2-}\text{aq}]}{[\text{TDIC}]} \right)
$$

Eq. (1) takes into account the equilibrium molar ratio of aqueous carbon species at sampling temperature and pH and the isotope enrichment factors (ϵ) between carbon species and gaseous CO$_2$ at the same conditions.

As reported in Table 1, the $\delta^{13}C_{\text{CO}_2}$ computed values are comprised between -25.73% (sample FI) and -18.69% (sample P2) vs. VPDB. The observed range clearly suggests that dissolved CO$_2$ in the waters of Fiumicino comes from an organic source, as highlighted in Fig. 8.
where total carbon content is plotted vs. calculated $\delta^{13}C_{CO_2}$. Negative $\delta^{13}C_{CO_2}$ values ($-25.73, -23.61$ and -18.69‰ vs. VPDB in samples FI, P1, and P2, respectively) in these waters imply dominant CO$_2$ shallow contribution from plant-root respiration and aerobic decay of organic matter (Cerling et al., 1991). Conversely, the heavier carbon isotope signature in the CO$_2$-rich gas phase of the fumarole ($\delta^{13}C_{CO_2} = -1.0$ and -1.1‰ vs. VPDB; Ciotoli et al., 2013) points to a completely different origin of carbon dioxide, certainly of deep provenance. If we report these data in Fig. 8 (green diamond), CO$_2$ source(s) could be individuated both in the mantle degassing ($\delta^{13}C_{CO_2}$ values from -7.0 to -3.0‰ vs. VPDB; Javoy et al., 1982; Rollinson, 1993) and in the thermo-metamorphic reactions involving carbonate formations ($\delta^{13}C$ of the Apenninic carbonates $= 2.2 \pm 0.66$ vs. VPDB; Chiodini et al., 2004), mixed at various extent, as already claimed by numerous authors for gas vents located in the Tyrrenian sector of central Italy (Minissale et al., 1999; Chiodini and Frondini, 2001; Minissale, 2004; Mariucci et al., 2008; Cinti et al., 2011; Carapezza et al., 2012), including the Fiumicino area (Barberi et al., 2007). Isotopic values of carbon in the Fiumicino fumarole are in the range of $\delta^{13}C_{CO_2}$ values for gas emitted from the Colli Albani and Sabatini volcanoes (Barberi et al., 2007; Mariucci et al., 2008; Cinti et al., 2011), strongly supporting the deep provenance of the gas emitted from the fumarole. Moreover, a similar ^{13}C enrichment (and the same deep origin) was also observed in the CO$_2$ emitted from shallow boreholes drilled in the Fiumicino area.

Fig. 7. (a) Na/Cl, (b) Br/Cl, and (c) HCO$_3$/Cl plots for waters sampled in the Fiumicino area. Dashed line represents the mixing line between the freshwater (FI, see text) and local seawater (SW) end-member. Solid line in plot (c) clearly evidences the position of the P1, P2, and FI samples. They lie far above the freshwater–seawater line, due to their higher bicarbonate contents. As a consequence, for these ground waters, an additional carbon source than seawater is requested.
Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Latitude</th>
<th>Longitude</th>
<th>T (°C)</th>
<th>pH</th>
<th>Eh (mV)</th>
<th>TDS (mg/l)</th>
<th>Cl (mmol/l)</th>
<th>Br (mg/l)</th>
<th>NO3 (mg/l)</th>
<th>SO4 (mg/l)</th>
<th>HCO3 (mmol/l)</th>
<th>Na+ (mmol/l)</th>
<th>K+ (mmol/l)</th>
<th>Mg2+ (mmol/l)</th>
<th>Ca2+ (mmol/l)</th>
<th>Total Carbon (mmol/Kg)</th>
<th>δ13C DIC (‰) vs. VPDB</th>
<th>δ13CCO2 (‰) vs. VPDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>41.7700</td>
<td>12.2375</td>
<td>20.5</td>
<td>7.30</td>
<td>40.180</td>
<td>21,602</td>
<td>136.5</td>
<td>4.39</td>
<td>3.70</td>
<td>21.4</td>
<td>20.5</td>
<td>29.1</td>
<td>3.95</td>
<td>12.6</td>
<td>15.1</td>
<td>66.45</td>
<td>-23.61</td>
<td>-16.06</td>
</tr>
<tr>
<td>P2</td>
<td>41.7700</td>
<td>12.2375</td>
<td>18.5</td>
<td>6.52</td>
<td>14.840</td>
<td>20,178</td>
<td>136.7</td>
<td>4.37</td>
<td>5.64</td>
<td>12.6</td>
<td>20.5</td>
<td>29.1</td>
<td>3.95</td>
<td>12.6</td>
<td>15.1</td>
<td>66.45</td>
<td>-23.61</td>
<td>-16.06</td>
</tr>
<tr>
<td>FI</td>
<td>41.8142</td>
<td>12.3890</td>
<td>18.2</td>
<td>6.90</td>
<td>50.0</td>
<td>1593</td>
<td>1115</td>
<td>3.76</td>
<td>0.5</td>
<td>n.d.</td>
<td>4.60</td>
<td>11.30</td>
<td>3.51</td>
<td>n.d.</td>
<td>n.d.</td>
<td>66.45</td>
<td>-19.03</td>
<td>-19.03</td>
</tr>
<tr>
<td>SW a</td>
<td>n.d.</td>
<td>n.d.</td>
<td>20.8</td>
<td>8.22</td>
<td>59.0</td>
<td>46,362</td>
<td>32,453</td>
<td>729.55</td>
<td>99.5</td>
<td>3.05</td>
<td>n.d.</td>
<td>n.d.</td>
<td>3.05</td>
<td>n.d.</td>
<td>n.d.</td>
<td>66.45</td>
<td>-19.03</td>
<td>-19.03</td>
</tr>
</tbody>
</table>

Note: a = Average δ13C value for seawater.

4. Discussion and conclusions

The Roman area and most part of the central–western Italy is characterized by high levels of deep CO2 (and other minor gases) degassing (Minissale et al., 2002; Chiodini et al., 2004, 2008; Gambardella et al., 2004). In this area, where degassing is not manifested through, for instance, obvious hydrothermal springs or fumaroles, the apparent lack of degassing may be a symptom that CO2 and other endogenous gases are substantially sealed in subsurface geological traps, from where they could suddenly escape in the case of human intervention (e.g., drilling or excavation; Barberi et al., 2007; Carapezza and Tarchini, 2007) or also by natural processes (e.g., faulting and fracturing, seismically-induced shaking and CO2 exsolution; Manga and Brodsky, 2006; Uysal et al., 2007, 2009; De Filippis et al., 2013a). The case of gas shallow entrapment applies to the Fiumicino area, where manifestation of natural degassing is substantially absent or still poorly known (Chiodini et al., 2000, 2008), but episodes of gas blowouts induced by well drilling happened in 1925, 2005, 2013, and several other times (Novarese, 1926; Barberi et al., 2007; Carapezza et al., 2010; Pantaloni and Argentieri, 2013), thus demonstrating the subsurface widespread entrapment of gases. It is noteworthy that, in the 2005 case reported by Barberi et al. (2007), seven persons inhabiting in houses close to the CO2 emitting well requested medical assistance and were hospitalized due to strong headache and other symptoms including also loss of consciousness (Barberi et al., 2007). It is therefore of paramount importance to understand how gases become entrapped in the Fiumicino area subsurface.

Our results, together with previous studies, show that CO2 and other minor gases in the Fiumicino area are entrapped in the PGS mid-Pleistocene gravel horizon (5–10 m thick) lying at a depth of about 40–50 m between the Lower Pleistocene MDP silty clays and the Upper Pleistocene TDS organic rich silty clays (Figs. 3 and 4). The main evidence for this entrapment is constituted by the fluid high pressure recorded by one of us (P.S.) during borehole drilling in the Fiumicino area when approaching the gravel depth (S4 and S5 boreholes; Fig. 4). The aquifer hosted by the gravel horizon can act as a buffer for endogenous gases (e.g., Crossey et al., 2006, 2009), hampering the possible natural upraise of the free gas phase toward the surface throughout the overlying TDS Upper Pleistocene silty clays (Figs. 3 and 4). Carbon isotopes emphasized that the pressurized gas hosted in the gravel horizon is inorganic-derived (i.e., deep) CO2 (Ciotoli et al., 2013) whereas unconfined aquifers dissolve a prevalent biogenic-derived (i.e., shallow) CO2. The two layers are completely separated by the impermeable Upper Pleistocene silty clays, and the two hosted aquifers are hydraulically unconnected (Fig. 4). δ13C of the deep CO2 (Ciotoli et al., 2013) falls in the range of the values measured in the gas emissions located in the western sector of central Italy, suggesting that CO2 could derive both from the mantle and thermo-metamorphism of carbonates, mixed at various extent. For this reason, we named as “fumarole” the fluid vent recently emerged at Fiumicino (i.e., fumarole: a volcanic vent, distinct from those erupting magma, from which volcanic gases escape). Moreover, geochemical data referred to the (deep) CO2 emitted at the fumarole are fully comparable with those reported by previous studies conducted in the same area when similar degassing episodes occurred (Barberi et al., 2007; Carapezza and Tarchini, 2007). In particular, in the gases blown out during the drilling of a well located close to the Fiumicino fumarole (February 2005), Barberi et al. (2007) found mainly CO2 (98 vol.%) accompanied by minor contents of N2 and CH4. The isotopic and chemical composition (δ13C = −1.55‰ and 3He/4He = 0.314 Ra) of the emitted gases revealed an affinity with gas manifestations from the adjacent Sabatini and Colli Albani volcanic districts, particularly from the first district. These authors stated that the gases emitted in the 2005 case had a significant component originated in (δ13C = −1.55‰ vs. VPDB, Barberi et al., 2007), located at about 1 km away from the site where gaseous eruption occurred in the 24th of August.
the mantle, which, beneath the Roman area, is probably deeply contaminated with crustal material, showing a \(\delta^{13}C \) enrichment as compared with the Italian high-temperature volcanic gases (Panichi and Tongiorgi, 1976; Minissale, 1991; Chiodini et al., 2000; Chiodini and Frondini, 2001; Minissale, 2004; Mariucci et al., 2008).

It is interesting to notice that the Fiumicino fumarole has kept degassing for weeks since 24 August, 2013, and it is still active at the time of writing (November 2013). This process implies that the gas reservoir is large and, perhaps, continuously fed (see also Novarese, 1926; Pantaloni and Argentieri, 2013). This evidence is consistent with our geophysical data that support a lateral continuity of the studied stratigraphic units (including the Middle Pleistocene gravel; Fig. 5) and with the fact that the gravel layer is intercepted by all boreholes in the Fiumicino area and also in the surrounding larger region (see borehole-data-based cross-sections in Bellotti et al., 1995; Bozzano et al., 2008; Funicelli and Giordano, 2008; Funicelli et al., 2008; Praturlon, 2008; Raspa et al., 2008; Marra et al., 2013; Milli et al., 2013). Moreover, degassing in the 1925 case lasted for about one year (Novarese, 1926). In other words, the gas reservoir is most probably not a local pocket of gravel, as also demonstrated by the fact that other phenomena of well gas blowout occurred in all the Fiumicino area including its offshore (see details below). The above-reported hypothesis of a continuously fed subsurface gas reservoir implies that this stored gas has to leak upward. Evident manifestations (diffuse or discrete) of degassing in the Fiumicino area are still substantially unreported in the scientific literature, although ongoing studies are starting to show a widespread and pervasive phenomenon of degassing in this area (e.g., Tuccimei et al., 2007; Ciotoli et al., 2013).

Concerning the trigger, the Fiumicino fumarole emerged from a shallow (30 m of maximum depth) borehole drilled in the hours or days preceding the first emergence (e.g., Corriere.it, 2013; IlFaroonline.it, 2013; IlGiornaleDellaProtezioneCivile.it, 2013; Terzobinario.it, 2013). This borehole did not extend down to the CO2-rich gravel layer (i.e., 40–50 m deep) and did not blow out for gas overpressure during drilling. The fumarole emerged soon after the drilling, probably for the drilling-related reduced sedimentary cover that restrained the CO2-rich gravel layer. We can hence assert that the fumarole was artificially triggered.

In synthesis, we propose a model (Fig. 9) for gas entrapment at shallow levels in the Fiumicino area consisting of ascending endogenous gases (mainly CO2). These gases can slowly permeate the Lower Pleistocene hard silty clays through fractures, thus reaching the permeable mid-Pleistocene gravel layer. Upward, the aquifer is confined by the impermeable Upper Pleistocene clays and silty clays and acts as a buffer against the ascending endogenous gases, thus resulting in a gas pressurized aquifer, which can constitute a source of hazard during excavation activities.

5. In conclusion

(1) Endogenous degassing in central–western Italy is very high (Gambardella et al., 2004; Chiodini et al., 2008). Where this phenomenon is apparently absent, such as in the Fiumicino area (Tiber River delta), CO2 and other endogenous gases may be entrapped in shallow areas as demonstrated in this paper and in previous ones (e.g., Novarese, 1926; Barberi et al., 2007; Carapezza and Tarchini, 2007), thus constituting a potential source of hazard. We point out the importance of both stratigraphic setting (i.e. the presence of a thick shallow impermeable clay layer) and the presence of an aquifer in the gravel horizon...
acting as a buffer for CO₂ upraise, to minimize the possibility of degassing in “undisturbed” (i.e. natural) conditions;

(2) As the stratigraphy of the Fiumicino area is very common in large portions of the densely-populated Roman area and as the adjacent volcanic districts are hydrothermally active, sudden degassing phenomena similar to the one recently observed at Fiumicino could again occur at Fiumicino and elsewhere in the surrounding region, mainly if artificially triggered (e.g., Novarese, 1926; Pantaloni and Argentieri, 2013);

(3) Any drilling or other types of excavations in the Fiumicino area and not only are thus exposed to hazards from gas sudden blow-outs. Preventive geological-stratigraphic studies and precautionary operative measures should therefore be undertaken when operating excavations and similar activities;

(4) As a timely confirmation of our previous conclusions, we signal that, on 26 September 2013, while writing this paper, further sudden degassing phenomena occurred a few tens of meters off the Tiber River delta (off Fiumicino) as a consequence of excavation activities (borehole drilling) connected with the construction of the new Fiumicino harbor (Supplemental Materials 4 and 5).

Acknowledgments

We thank the Fiumicino Municipality for financing the stratigraphic and geophysical campaigns carried out by Geomagellan (P. Sella). A.B. thanks G. Ciotoli, M. Lustrino, and F. Trippetta for fruitful discussions. We also thank D. Cinti for carrying out chemical analyses of the Fiumicino groundwater. We acknowledge the invaluable work of historical research by A. Argentieri and M. Pantaloni (http://www.geoitaliani.it), who have rightly brought to our attention the degassing events, which occurred at Fiumicino in 1925. We thank A. Brogi and L. Crosse for their constructive reviews, and the Editor, M. Mangan, and her staff for the careful editorial work.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2014.05.008. These data include Google maps of the most important areas described in this article.

References

Malorni, A., Funiciello, R., Mattei, M., Turi, B., 2002. Stable isotope geochemistry and...