Solution slip and separations on strike-slip fault zones: theory and application to the Mattinata Fault, Italy

Andrea Billi*

Dipartimento di Scienze Geologiche, Università “Roma Tre”, Largo S. L. Murialdo 1, 00146, Rome, Italy

Received 25 July 2001; accepted 30 May 2002

Abstract

We present a set of relationships to determine the component of slip and separations generated by the cleavage-controlled volume contraction in strike-slip fault zones. The fault walls can translate toward each other along the (cleavage-normal) axis of maximum shortening as rock is dissolved by pressure solution along patterned cleavage surfaces within strike-slip fault zones. The fault zone shortening produces an ‘apparent slip’ and possible separations of reference stratigraphic surfaces across the fault zone. Solution related slip and separations can differ in magnitude and have either the same or the opposite sense. These discrepancies depend upon the amount of fault zone shortening and upon the angles between the fault and the shortening axis, and between the fault and the reference stratigraphic surface. Separations can be considerable at any scales even for very low amounts of fault zone thinning. Apparent slip can be appreciable for large amounts of fault zone thinning and/or high fault-to-cleavage incidence angles. With the proper geometrical conversions, the relationships here presented can apply to any fault type.

The application of this technique to the left-lateral Mattinata Fault, Italy, demonstrated that both left- and right-lateral strike separations can occur along the fault even for low amounts of fault zone contraction by rock dissolution.

q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Solution slip; Solution separation; Solution cleavage; Fault zone shortening; Mattinata Fault

1. Introduction

The development of cleavage surfaces by pressure solution (e.g. Sharpe, 1847; Durney, 1972) has long been recognised as a mechanism that can account for a large part of strain by material removal across faults (e.g. Mitra et al., 1984; Nickelsen, 1986; Wojtal and Mitra, 1986; Aydin, 1988; Peacock and Sanderson, 1995; Willemsen et al., 1997; Billi and Salvini, 2000, 2001) or across broader regions of deformation (e.g. Groshong, 1975b, 1976; Engelder and Geiser, 1979; Wright and Henderson, 1992; Gray and Mitra, 1993; Durney and Kisch, 1994; Mitra, 1994; Markley and Wojtal, 1996; McNaught and Mitra, 1996; Davidson et al., 1998; Whitaker and Bartholomew, 1999). Rock dissolution can result in a volume loss from minimum percentages (Wintsch et al., 1991), owing to the scarcity of water circulation (Engelder, 1984), up to 20% (Ramsay and Wood, 1972) and even 50–60% (Mimran, 1977; Alvarez et al., 1978; Wright and Platt, 1982; Beutner and Charles, 1985; Wright and Henderson, 1992).

Understanding magnitude, direction and sense of both slip and separation (sensu Dennis, 1967) on faults is commonly complicated by deceptive patterns created by the interaction between the attitudes of faults, stratigraphic surfaces and topography (e.g. Hobbs et al., 1976; Marshak and Mitra, 1988). Separations on faults in two-dimensional views (e.g. maps, cross-sections or outcrops) may be fully incongruent with fault slip by both magnitude and sense (Fig. 1). Thinning of exposure- to regional-scale fault zones by rock dissolution across solution cleavages may add components to fault slip and separations (Fig. 2). These additional components can be detected on two-dimensional views at the proper observation scales. The process invoked for the fault zone shortening is analogous to the well-known mechanism of truncation and offset of fossils and/or planar markers across single solution surfaces (e.g. Conybeare, 1949; Nickelsen, 1966; Groshong, 1975a; Bell, 1978; Roy, 1978).

In this paper, the components of fault slip and separations...
generated by cleavage-controlled fault zone contraction are calculated for strike-slip fault zones, on the assumption that shortening occurs perpendicularly to solution cleavages. The method dealt with in this paper is of interest to those involved in the understanding of contradictory fault slip and separations along strike-slip faults in exposures, maps and cross-sections. Through simple geometrical rotations, this method can be applied to any fault zone type, within which shortening by cleavage-normal rock dissolution occurs.

2. Theory

2.1. Solution slip

Solution cleavage in strike-slip fault zones can develop as a continuous array of spaced, sub-parallel, solution surfaces within fault zones as wide as a few centimetres up to a few hundreds of metres (e.g. Nickelsen (1986) for thrusts, Peacock et al. (1999) and Salvini et al. (1999) for strike-slip faults). The cleavage to fault interceptions (Fig. 2) are usually vertical (i.e. in strike-slip fault zones) and parallel to the fault rotational axis that is an imaginary cylinder lying on the fault plane perpendicularly to the fault slicks and compelled to rotate congruously with the fault motion (Wise and Vincent (1965), geometrically coincident with the ‘slip normal’ of Wojtal (1986)). The cleavage surfaces can form with the fault an approximately constant angle (e.g. 40° in Salvini et al. (1999)). In such a fault zone, a contraction in volume by cleavage-normal rock dissolution (Nickelsen, 1972) generates an apparent slip (sensu Groshong, 1975a), SI (Fig. 2), henceforth referred to as solution slip. This term applies to the along-strike component of the cleavage-normal shortening of the fault zone (Fig. 2). The relationship for SI across the fault zone is:

\[SI = \frac{Dn}{\tan(90° - \alpha)} \]

in which \(Dn \) is the amount of fault-normal contraction and \(\alpha \) is the angle from the cleavage to the fault, following the rotation sense of the fault rotational axis (Fig. 2).

The \(\alpha \) angle may theoretically vary from 0 to 90°. In nature \(\alpha \) is commonly around 45°, but may vary from a minimum of about 25° (i.e. transpressional shear zones) to a maximum of about 75° (i.e. transtensional shear zones) (van der Pluijm and Marshak, 1997). In Fig. 3 we plot the values of \(SI \) against \(Dn \) for a theoretical fault zone 100 m in width (\(W = 100 \) m in Fig. 3) and for \(\alpha = 25, 50 \) and 75°. The diagram shows that \(SI \) exceeds \(W \), which can be taken as the resolution limit of observation, only for high values of \(Dn \) and \(\alpha \).

2.2. Solution separations

The fault zone contraction in volume can also produce stratigraphic separations (Fig. 2), henceforth referred to as solution separations.

2.2.1. Strike separation

The solution strike separation (i.e. the separation along the fault strike; Groshong, 1999), \(Ps \), of a reference surface of stratigraphic nature depends upon the \(Dn \) magnitude, the fault to the stratigraphic surface angle (\(\beta \)), and the fault to the shortening axis (i.e. assumed as normal to the cleavage surfaces) angle (\(\gamma \)) that is equal to 90° – \(\alpha \). The \(\beta \) and \(\gamma \) angles are measured, on the horizontal plane, starting from the fault plane and following the rotation sense of the fault rotational axis. \(\beta \) varies from 0 to 180°, whereas \(\gamma \) varies from 0 to 90°.

\(Ps \) for any inclined stratigraphic surface is calculated...
from the following expressions:

(a) for \(\beta < \gamma \),

\[Ps = \frac{Dn}{\tan \beta} - Sl \]

(b) for \(\beta = \gamma \),

\[Ps = 0 \]

(c) for \(90^\circ > \beta > \gamma \),

\[Ps = Sl - \frac{Dn}{\tan \beta} \]

(d) for \(\beta = 90^\circ \),

\[Ps = Sl \]

Fig. 2. Map views of left-lateral strike-slip fault zones developing across inclined marker surfaces. On the left, incipient fault zones with development of solution cleavages. Fault and solution cleavage surfaces are vertical. Their intersection lines are parallel to the fault rotational axis (see text for definition). On the right, the fault zones are removed by the rock dissolution across (i.e. normal to) the cleavage surfaces. The opposite fault blocks are translated towards each other along the cleavage-normal shortening axis. This process produces an apparent fault slip (solution slip or \(Sl \)) and different strike separations (solution strike separation or \(Ps \)) of the reference stratigraphic surface as a function of \(\alpha \) and \(\beta \) angles. Note that in (a) \(Sl \) and \(Ps \) have opposite sense, in (b) \(Ps \) is equal to zero, and in (c)–(e) \(Sl \) and \(Ps \) have the same sense.
2.2.2. Dip separation

The fault zone shortening by cleavage-normal rock dissolution can also produce a solution dip separation (i.e. the separation along the fault dip; Groshong, 1999), \(Pd \), of any inclined stratigraphic surface (Fig. 5):

\[
Pd = \frac{Dn}{\tan(90^\circ - \delta)}
\]

where \(\delta \) is the dip of the stratigraphic surface as measured on the section normal to the fault strike (Fig. 5c).

Combining Eqs. (1) and (7) yields:

\[
Sl = Pd \frac{\tan(90^\circ - \delta)}{\tan(90^\circ - \alpha)}
\]

that allows calculating \(Sl \) from \(Pd \) and vice versa.

\(Pd \) increases with increasing \(Dn \) and \(\delta \) and becomes appreciable (i.e. greater than \(W \) in Fig. 4b) for \(\delta \) approaching \(90^\circ \), even for very low \(Dn \) magnitudes (Fig. 4b). \(Pd \) is unrelated to \(\beta \). Even for \(\beta \) equal to 0 or \(180^\circ \), \(Pd \) has a nonzero magnitude.

2.2.3. Oblique separation

The fault zone shortening can also produce solution oblique separations (i.e. the separation on sections normal to the fault plane and oblique to the fault slip vector), \(Pq \), of any inclined stratigraphic surface. \(Pq \) is calculated from the dip (\(\epsilon \)) of the given section and from the dip (\(\theta \)) of the reference stratigraphic surface as measured on the fault surface (Fig. 6). \(Pq \) on a section dipping to the same direction of the stratigraphic surface is:

(a) for \(\epsilon > \theta \)

\[
Pq = \frac{Pd}{\sin(\epsilon - \theta)} \sin(90^\circ + \theta)
\]

(b) for \(\epsilon < \theta \)

\[
Pq = \frac{Pd}{\sin(\theta - \epsilon)} \sin(90^\circ - \theta)
\]

(c) for \(\epsilon = \theta \)

\[
Pq = 0
\]

whereas on a section dipping to the opposite direction of the stratigraphic surface,

\[
Pq = \frac{Pd}{\sin(\theta + \epsilon)} \sin(90^\circ - \theta)
\]

\(Pq \) shows different magnitudes and opposite senses depending upon the attitude of the reference stratigraphic surface and the attitude of the given section (Fig. 4c). For synthetic \(\epsilon \) and \(\theta \) angles, \(Pq \), in Fig. 4b) tends to infinity as \(\epsilon \) tends to \(\theta \), whereas for antithetic \(\epsilon \) and \(\theta \) angles, \(Pq \)

\[
Sl = Pd \frac{\tan(90^\circ - \delta)}{\tan(90^\circ - \alpha)}
\]
(Pq in Fig. 4c) results under the resolution limit (W in Fig. 4c) even for large Dn magnitudes.

3. Application to the Mattinata Fault

3.1. Geological background

The Mattinata Fault (Fig. 7) in the Southern Apennines, Italy, is an E–W strike-slip fault (Funicello et al., 1988) cutting through Meso-Cenozoic carbonate rocks of platform-to-slope origin (Bosellini et al., 1999). In the last decades, the Mattinata Fault has been the subject of several studies by both stratigraphers and structural geologists, who commented on the strike-slip kinematics of this fault (Ricchetti and Pieri, 1999, and reference therein). However, the sense of the strike-slip displacement on the Mattinata Fault is still the subject of a broad debate, owing to the contradictory stratigraphic separations (Fig. 7; Servizio Geologico d’Italia, 1965, 1970) and structural evidence (e.g. Salvini et al., 1999) along this fault. In summary, the Mattinata Fault and/or its eastward off-shore prolongation has been interpreted or mentioned as right-lateral (Guerrichio, 1983; 1986; Finetti and Del Ben, 1986; de Dominicis and Mazzoldi, 1987; Finetti et al., 1987; Doglioni et al., 1994; Tramontana et al., 1995; Anzidei et al., 1996; Morsilli and Bosellini, 1997; Guerrichio and Pierri, 1998; Bosellini et al., 1999), left-lateral (Funicello et al., 1988; Favali et al., 1993; Salvini et al., 1999; Billi, 2000; Billi and Salvini, 2000; 2001), right- to left-lateral inverted (de Alteriis, 1995; Gambini and Tozzi, 1996), left- to right-lateral inverted (Chilovi et al., 2000), undetermined strike-slip (Aitello and de Alteriis, 1991; Bosellini et al., 1993a,b; Bertotti et al., 1999; Graziano, 1999; 2000; Casolari et al., 2000) or reverse (Ortolani and Pagliuca, 1987, 1988).

The Mattinata Fault (Fig. 8a) consists of a 200-m-wide, sub-vertical fault zone that cuts across carbonate beds that strike E–W (Fig. 8b) and dip southwards at 20–40°. Within the Mattinata Fault zone, a sub-vertical, closely-spaced solution cleavage developed for the entire length of the fault.
with a NW–SE general trend (Fig. 8c). Cleavage surfaces form with the fault trace a rather constant α angle of 40° (Salvini et al., 1999). Cleavage consists of sinuous to planar surfaces with a wiggly to smooth profile (Fig. 9). Cleavage spacing measured perpendicular to cleavage surfaces is about 20 mm on average (Fig. 8d). Stylolite amplitude as measured on cleavage surface exposures is about 30 mm on average (Fig. 8e). No marker surfaces are known on both sides of the fault (Servizio Geologico d’Italia, 1965, 1970) except for the Mesozoic platform-to-slope margin exposed on the eastern side of the fault (Fig. 7). This surface is interpreted as a faulted (Masse and Luperto Sinni, 1987; Borgomano, 2000) and scalloped (Bosellini et al., 1993a,b) abrupt margin of the Mesozoic carbonate platform. In the southeastern

Gargano Promontory, the Mattinata Fault cuts nearly parallel to this surface, which shows a strike separation on the fault of about 6000 m (S.S. in Fig. 7).

3.2. Solution slip and separations on the Mattinata Fault

By applying Eqs. (1)–(6) to the Mattinata Fault, we obtained an estimate of possible Sls and Pss along this fault (see Appendix A for the method of estimating equation...
parameters and Table 1 in Appendix B for the input data). Results from this estimate are provided in Table 1 (Appendix B) and Fig. 10. S_l resulted as negligible in comparison with the fault zone size, since it varies from 6 to 30 m. By contrast, P_s was considerably greater than the fault zone size in places. In Fig. 10b, the Mattinata Fault trace as mapped on the 1:100,000 maps after Servizio Geologico d’Italia (1965, 1970) has been subdivided into 46 segments with strikes varying from N51°E to N118°E (Table 1 and Fig. 8a). For each segment, the computed P_s has been plotted as a function of the segment longitude at its median point (Fig. 10b). By assuming the fault zone width as the resolution limit (i.e. $W = 200$ m in Fig. 10b), P_s along the Mattinata Fault exceeds this limit both in the left- and in the right-lateral sense of slip. The maximum left-lateral value of P_s along the Mattinata Fault is 1015 m (Table 1, datum id = 19), whereas its maximum right-lateral value is 11,099 m (Table 1, datum id = 35). P_s in the eastern portion of the Mattinata Fault can fully explain the 6000 m of right-lateral strike separation of the platform-to-slope boundary as mapped in Servizio Geologico d’Italia (1965, 1970) (Fig. 10a), even for an overestimate of D_n and apart from the fault mechanical translation whose magnitude is unknown. It should be borne in mind that these results are valid on the assumption of a nearly planar geometry of the platform-to-slope boundary surface, owing to its tectonic nature (e.g. Masse and Luperto Sinni, 1987; Tramontana et al., 1995). Conversely, the observed strike separation on the Mattinata Fault may simply be explained by the sinuous or even zigzag geometry that platform-to-slope boundaries may have (e.g. Sellwood, 1996).

4. Limits of the method

The method discussed above has limits on its application, which are worth discussing.

1. From Eq. (1) and Fig. 3 we infer that S_l should be commonly negligible with respect to mechanical translations along faults, unless the α angle is large and the
fault zone shortening by rock dissolution is rather high (>15–20% for $\alpha = 45^\circ$), but these conditions have to be verified in nature. In the case of the Mattinata Fault, SI should be at least one or two orders of magnitude smaller than the presumed mechanical translation that, on a first approximation, might be of the same order of the along strike dimension of the pull-apart basin located East of the S. Giovanni R. village (i.e. 2000 m; see also Ricchetti and Pieri, 1999, and reference therein).

2. As mentioned in the introductory section (Fig. 1), solution separations do not explain all observations of slip vs. separation discrepancies. Other explanations are possible for these discrepancies such as heterogeneous change of fault displacement associated with heterogeneous behaviour of the host rock, or the progressive decrease of the fault displacement at the ends of faults.

3. Fault zones that form through a combination of shear and volume reduction are known also in the absence of cleavage and rock dissolution (e.g. Aydin, 1978; Aydin and Johnson, 1978; Mollema and Antonellini, 1996). Volume reduction on these faults could generate ‘apparent’ slip and separations on the fault, which cannot be computed by the above-discussed method.

5. Conclusions

The method presented in this paper may partly explain the fault slip vs. separation discrepancies that can occur on maps, cross-sections and exposures. The assumption for the application of the method is that the fault zone contraction in volume occurs perpendicular to patterned fault-related cleavages such as those documented by Salvini et al. (1999). With simple geometrical rotations, this method may apply to fault types other than strike-slip.

Cleavage-controlled fault zone contraction can be at the origin of slip vs. separation discrepancies, in which stratigraphic separations along the same fault vary from the same to the opposite sense to the true slip. This, in particular, can occur for a reference stratigraphic surface sub-parallel to the fault zone, and intersecting it on both sides at small angles (e.g. Billi, 2000).

Acknowledgments

Comments and review by D. Peacock substantially improved this paper. The paper benefited also from constructive discussions with F. Rossetti, F. Salvini and F. Storti. M.C. Bertagnolio and E. Da Riva helped with the mathematics and 3D geometry. F. Salvini is thanked for kindly providing Daisy 2.0 software for structural analysis. The author wishes to thank two anonymous reviewers and T. Blenkinsop for insightful reviews.
Fig. 9. (a) Photograph (map view) of an E–W left-lateral strike-slip fault (map view) cutting through NW–SE solution cleavage surfaces (Mattinata Fault zone, northeast of the Mattinata village). (b) Photograph (map view) of a bedding plane with the trace of a NW–SE subvertical solution cleavage surface (Mattinata Fault zone, east of the S. Giovanni Rotondo village). Note the undulating stylolitic profile with sinuous teeth.

Fig. 10. (a) Geological sketch of the Mattinata Fault area (see Fig. 7 for legend). (b) P_s vs. longitude diagram for the Mattinata Fault. P_s values are computed from the dataset in Table 1 (Appendix B). Positive ordinates are for left-lateral separations, negative ordinates are for right-lateral separations. Note discontinuity on the negative ordinate scale. W (= 200 m) is the Mattinata Fault zone width and may be taken as the resolution limit. Shading in the diagram indicates the P_s negative highest values, which correspond in longitude to the area where a right-lateral strike separation can be appreciated on maps (Fig. 7) along the Mattinata Fault.
Appendix A. Estimate of equation parameters along the Mattinata Fault

We subdivided the Mattinata Fault trace as mapped on the 1:100,000 maps after Servizio Geologico d’Italia (1965, 1970) into 46 segments. For each segment we assessed α, β and Dn in order to compute Sl and Ps associated with each of the 46 fault segments.

1. We computed the α angle as the angular distance from the fault segment, as extracted from Servizio Geologico d’Italia (1965, 1970), to the average cleavage azimuth in that area, as extracted from statistic analysis of Salvini et al. (1999).

2. We computed the β angle as the angular distance from the fault segment, as extracted from Servizio Geologico d’Italia (1965, 1970), to the average...
bedding azimuth (i.e. original data collected for this work) in that area.

3. D_n can be inferred through the estimate of material removed by pressure solution along cleavage surfaces by using geometric and/or chemical methods (e.g. Stockdale, 1926; Gratier, 1983; Mitra and Yonkee, 1985; Groschong, 1988; Protzman and Mitra, 1990; Wright and Henderson, 1992). For each fault segment, we computed D_n according to geometric methods, by comparing the average stylolite amplitude along cleavage surfaces (i.e. original data collected for this work) with the average cleavage spacing in the same area, as extracted from statistic analysis of Salvini et al. (1999). Our results are consistent with indications for estimates of shortening across cleavage surfaces by Alvarez et al. (1978) and Alvarez and Engelder (1982), based on the morphology of cleavage profile.

Appendix B. List of data used for the application to the Mattinata Fault

See Table 1.

References

Gray, M.B., Mitra, G., 1993. Migration of deformation fronts during progressive deformation: evidence from detailed structural studies in

